

First year Power Branch

(Total Mark (100) 20 for each question)

Answer the following questions:

Question (1)

(a) Test the series $\sum_{n=1}^{\infty} \frac{3n+1}{2^n}$ for convergence and find the interval of convergence

for the power series $\sum_{n=1}^{\infty} \frac{(x+3)^n}{n \cdot 2^n}$

(b) Given $w = \tan^{-1}(x^3 + y^3)$ show that $x \frac{\partial w}{\partial x} + y \frac{\partial w}{\partial y} = 3 \sin w \cos w$

(c) Find the local extrema of the function $f(x, y) = -x^2 - 4x - y^2 + 2y - 1$.

Question (2)

- (a) For any scalar function $\varphi(x, y, z)$ show that **curl grad** $\varphi = 0$
- (b) Find the area enclosed by the curve $x^{2/3} + y^{2/3} = a^{2/3}$.
- (c) Find the area bounded by the curves xy = 4, xy = 8, $xy^3 = 5$, $xy^3 = 15$

Question (3)

Solve the following differential equations

(a) $(xy - x^2)dy - y^2dx = 0$

(b)
$$(xy^3 - 1)dx - x^2y^2dy = 0$$

(c) $y'' - 6y' + 13y = 8e^{3x} \sin 2x$

Question (4)

- (a) Find the general solution for Euler equation $x^2y'' xy' + 2y = x \ln x$
- (b) Use variation of parameter to solve $y'' + n^2 y = \sec nx$.
- (c) Solve xy'' (2x + 1)y' + (x + 1)y = 0 given that $y = e^x$ one solution.

```
إنتبه : السؤال الخامس في ظهر ورقة الأسئلة
```

Question (5)

(a) For the vector field $\vec{F} = (4xy - 3x^2z^2)\vec{i} + 2x^2\vec{j} - 2x^3z\vec{k}$ prove that $\oint_C \vec{F} \cdot d\vec{r}$ independent to any path through two any points in domain \vec{F} and find

the scalar potential function φ which satisfy $\vec{F} = \vec{\nabla} \varphi$.

- (b) Evaluate $\iint_{S} \vec{F} \cdot \vec{n} \, ds$ where $\vec{F} = 2yx \, \vec{i} + y \, z^2 \, \vec{j} + xz \, \vec{k}$ and S is the surface of parallelogram bounded by x = 0, y = 0, z = 0 x = 2, y = 1, z = 3
- (c) Apply Stock and Green theorem to evaluate $\iint_{S} (\overline{\nabla} \times \overline{F}) \cdot \overline{n} dS$ where

 $\vec{F} = (x^2 + y - 4)\vec{i} + (3xy)\vec{j} + (2xz + z^2)\vec{k} \text{ and } S \text{ is the surface bounded by the}$ paraboloid $z = 4 - (x^2 + y^2), z \ge 0.$

Dr. Fathi Abdessalam